4,483 research outputs found

    Open questions in the study of population III star formation

    Full text link
    The first stars were key drivers of early cosmic evolution. We review the main physical elements of the current consensus view, positing that the first stars were predominantly very massive. We continue with a discussion of important open questions that confront the standard model. Among them are uncertainties in the atomic and molecular physics of the hydrogen and helium gas, the multiplicity of stars that form in minihalos, and the possible existence of two separate modes of metal-free star formation.Comment: 15 pages, 2 figures. To appear in the conference proceedings for IAU Symposium 255: Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxie

    Two-Loop Sudakov Form Factor in a Theory with Mass Gap

    Full text link
    The two-loop Sudakov form factor is computed in a U(1) model with a massive gauge boson and a U(1)Ă—U(1)U(1)\times U(1) model with mass gap. We analyze the result in the context of hard and infrared evolution equations and establish a matching procedure which relates the theories with and without mass gap setting the stage for the complete calculation of the dominant two-loop corrections to electroweak processes at high energy.Comment: Latex, 5 pages, 2 figures. Bernd Feucht is Bernd Jantzen in later publications. (The contents of the paper is unchanged.

    The Formation and Fragmentation of Disks around Primordial Protostars

    Full text link
    The very first stars to form in the Universe heralded an end to the cosmic dark ages and introduced new physical processes that shaped early cosmic evolution. Until now, it was thought that these stars lived short, solitary lives, with only one extremely massive star, or possibly a very wide binary system, forming in each dark matter minihalo. Here we describe numerical simulations that show that these stars were, to the contrary, often members of tight multiple systems. Our results show that the disks that formed around the first young stars were unstable to gravitational fragmentation, possibly producing small binary and higher-order systems that had separations as small as the distance between the Earth and the Sun.Comment: This manuscript has been accepted for publication in Science. This version has not undergone final editing. Please refer to the complete version of record at http://www.sciencemag.org

    Fabrication of integrated planar gunn diode and micro-cooler on GaAs substrate

    Get PDF
    We demonstrate fabrication of an integrated micro cooler with the planar Gunn diode and characterise its performance. First experimental results have shown a small cooling at the surface of the micro cooler. This is first demonstration of an integrated micro-cooler with a planar Gunn diode

    Carbon in different phases ([CII], [CI], and CO) in infrared dark clouds: Cloud formation signatures and carbon gas fractions

    Get PDF
    Context: How do molecular clouds form out of the atomic phase? And what are the relative fractions of carbon in the ionized, atomic and molecular phase? These are questions at the heart of cloud and star formation. Methods: Using multiple observatories from Herschel and SOFIA to APEX and the IRAM 30m telescope, we mapped the ionized, atomic and molecular carbon ([CII]@1900GHz, [CI]@492GHz and C18O(2-1)@220GHz) at high spatial resolution (12"-25") in four young massive infrared dark clouds (IRDCs). Results: The three carbon phases were successfully mapped in all four regions, only in one source the [CII] line remained a non-detection. Both the molecular and atomic phases trace the dense structures well, with [CI] also tracing material at lower column densities. [CII] exhibits diverse morphologies in our sample, from compact to diffuse structures probing the cloud environment. In at least two out of the four regions, we find kinematic signatures strongly indicating that the dense gas filaments have formed out of a dynamically active and turbulent atomic/molecular cloud, potentially from converging gas flows. The atomic-to-molecular carbon gas mass ratios are low between 7% and 12% with the lowest values found toward the most quiescent region. In the three regions where [CII] is detected, its mass is always higher by a factor of a few than that of the atomic carbon. The ionized carbon emission depends as well on the radiation field, however, we also find strong [CII] emission in a region without significant external sources, indicating that other processes, e.g., energetic gas flows can contribute to the [CII] excitation as well.Comment: 15 pages, 18 figures, accepted by Astronomy & Astrophysics, a higher resolution version can be found at http://www.mpia.de/homes/beuther/papers.htm
    • …
    corecore